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ABSTRACT

This study evaluates the impact of assimilating high-resolution, inner-core reconnaissance observations on

tropical cyclone initialization and prediction in the 2013 version of the operational Hurricane Weather Re-

search and Forecasting (HWRF) Model. The 2013 HWRF data assimilation system is a GSI-based hybrid

ensemble–variational system that, in this study, uses the Global Data Assimilation System ensemble to es-

timate flow-dependent background error covariance. Assimilation of inner-core observations improves track

forecasts and reduces intensity error after 18–24 h. The positive impact on the intensity forecast is mainly

found in weak storms, where inner-core assimilation produces more accurate tropical cyclone structures and

reduces positive intensity bias. Despite such positive benefits, there is degradation in short-term intensity

forecasts that is attributable to spindown of strong storms, which has also been seen in other studies. There are

several reasons for the degradation of intense storms. First, a newly discovered interaction between model

biases and theHWRFvortex initialization procedure causes the first-guess wind speed aloft to be too strong in

the inner core. The problem worsens for the strongest storms, leading to a poor first-guess fit to observations.

Though assimilation of reconnaissance observations results in analyses that better fit the observations, it also

causes a negative intensity bias at the surface. In addition, the covariance provided by the NCEP global model

is inaccurate for assimilating inner-core observations, and model physics biases result in a mismatch between

simulated and observed structure. The model ultimately cannot maintain the analysis structure during the

forecast, leading to spindown.

1. Introduction

Assimilation of high-resolution data within tropical cy-

clones (TCs) can significantly reduce errors in TC fore-

casts. The potential of such data to improve TC forecasts

has been known for about a decade and was first demon-

strated in the literature by Zhang et al. (2009). That study

used an experimental ensemble Kalman filter (EnKF)

coupled with the Weather Research and Forecasting

(WRF) Model to assimilate WSR-88D Doppler velocity

data from Hurricane Humberto (2007). The resultant

forecast improvements were impressive, spawning a great

deal of interest in the concept. Weng and Zhang (2012)

followedwith a study ofHurricaneKatrina (2005) using the

same WRF-EnKF system to assimilate airborne Doppler

velocity data from the National Oceanic and Atmospheric

Administration (NOAA) P-3 tail Doppler radar (TDR).

The positive impact on track and intensity forecasts in that

study demonstrated that inner-core, high-resolution re-

connaissance could be successfully used to improve TC

forecasts. Zhang et al. (2011) and Zhang and Weng (2015)

showed over a number of cases with the same system that

forecast errors equal to or lower than those from the

National Hurricane Center (NHC) could be achieved by

assimilating airborne Doppler velocity data. Weng and

Zhang (2016; hereafter WZ16) followed with a very large
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retrospective over a 5-yr period and found that the com-

bination of all reconnaissance types improved forecasts of

the maximum 10-m wind (Vmax) and center location by

about 10%and 15%, respectively.Meanwhile, Aksoy et al.

(2013) and Aberson et al. (2015; hereafter A15) examined

83 cases with their experimental, EnKF-based Hurricane

Ensemble Data Assimilation System (HEDAS) and also

found that assimilation of airborne reconnaissance obser-

vations had a significant positive impact onTCanalyses and

intensity forecasts. A number of other studies (e.g., Li et al.

2012; Zhu et al. 2016; Christophersen et al. 2017) have also

shown the benefit of assimilating TC inner-core data over

more limited samples.

Major difficulties for inner-core data assimilation

(DA) in many studies include initial intensity biases

and prominent spindown1 of hurricanes. In A15, for

example, assimilation of some reconnaissance types

caused strong negative Vmax bias that lasted for 24 h.

Vukicevic et al. (2013) examined the spindown prob-

lem in great detail for HEDAS and found that forecast

initialized with the most intense hurricanes exhibited

the largest spindown. In another example, assimilation

of reconnaissance data in WZ16 degraded Vmax for

the first 24 h. Though this has not been documented in

literature, very large spindown (at times.25m s21) has

likewise been observed in real-time experiments with

the WZ16 system. Hendricks et al. (2011) also docu-

mented substantial spindown issues for the Naval

Research Laboratory’s tropical cyclone version of the

Coupled Ocean–Atmosphere Mesoscale Prediction

System (COAMPS-TC). Given that initial biases and

spindown appear to be a major, common problem in TC

forecasting, a significant goal of this paper is to docu-

ment their prevalence and discuss potential causes as

well as remedies.

This study presents results from the first and largest

retrospective to assess assimilation of high-resolution,

inner-core TC data into an operational model: the 2013

version (H213) of the Hurricane Weather Research and

Forecasting system (HWRF) at the National Centers for

Environmental Prediction (NCEP). As such, this is the

first glimpse at the impact that airborne reconnaissance

has had on HWRF forecasts in an operational setup

and a baseline from which improvement can be ex-

pected. As we will show, these initial results presented

NCEP with both benefits and challenges, and have

guided the implementation of inner-core assimilation

over the past few years.

While inner-core data assimilation has the potential to

improve dynamical model intensity forecasts, it was a

challenging issue in the HWRF implementation. Unlike

the experimental results presented above, HWRF uses

Gridpoint Statistical Interpolation (GSI; Wu et al.

2002), a three-dimensional variational (3DVAR) algo-

rithm, for data assimilation. Initial experiments with

numerous configurations of GSI in HWRF showed

negative impacts from assimilating inner-core data. The

problems stemmed from the background error co-

variance traditionally used in 3DVAR, which is largely

isotropic and assumed to be static and constrained by

large-scale geostrophic balance. With such a back-

ground error covariance, observation information can-

not effectively spread in space and between physical

variables in the TC vortex area during data assimilation

(e.g., Fig. 8 of Lu et al. 2017a).

There are several alternatives to 3DVAR that can

improve data assimilation in hurricanes. For example,

the main advantage of an EnKF over the traditional

variational method is that it uses short-range ensemble

forecasts to estimate forecast error covariance, which is

fully flow dependent and does not rely on prescribed

balances that may not hold true for TCs. Another as-

similation alternative is hybrid data assimilation (Lorenc

2003; Buehner 2005), which combines the advantages

of the EnKF and the variational methods (Wang

2010). The hybrid method was developed and im-

plemented in the NCEP Global Forecast System

(GFS) in 2012. With the hybrid method, the flow-

dependent ensemble covariance can be incorporated

into the variational framework. To more effectively

ingest inner-core in situ and remote sensing observa-

tions for TC applications, a GSI-based one-way hybrid

data assimilation system was developed for HWRF

and is used in this study.

HWRF also uses a vortex initialization (VI) pro-

cedure, which typically is not present in research as-

similation systems, to help initialize the vortex and

reduce forecast biases when data are sparse. The VI

technique developed by Liu et al. (2012) uses storm

location, intensity, and size in the Tropical Cyclone

Vitals (TCVitals) reports to relocate and modify the

vortex (see also Tallapragada et al. 2013). Extensive

testing has shown that VI is a necessary component

of HWRF, particularly when reconnaissance is not

available.

The principle data of interest here are high-resolution,

inner-core aircraft observations, including the NOAAP-3

TDR radial velocity data, aircraft flight-level data, and

stepped frequency microwave radiometer (SFMR) wind

speed retrievals at 10-maltitude.HWRF is one of very few

models utilizing these new sources of data in real time.

1 Spindown refers to a dramatic weakening of the simulated

vortex during the first 6–12 h, which is a leading cause of negative

intensity bias for strong TCs in HWRF.
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Thedata are also assimilated into theWZ16 system,which

is based on the WRF-ARW Model. In this study, de-

tailed implementation and experiments with the air-

craft reconnaissance observations for the H213 will be

documented.

The manuscript is constructed as follows. The H213

implementation, the one-way hybrid data assimilation

system, and the design of the data assimilation experi-

ments for the reconnaissance data impact study will be

described in section 2. Section 3 shows verification of the

data assimilation experiments spanning the 2008–12

hurricane seasons, as well as detailed analysis of

the data impacts. Concluding remarks are given in the

final section.

2. Methodology and experimental design

a. HWRF Model

HWRF runs separately for each storm as a triply

nested model with domains that follow the storm center.

The H213 domain configuration has 43 vertical levels

and a 50-hPa model top. The sizes of the forecast do-

mains are shown in Fig. 1. The horizontal grid spacing2

of the outer, middle, and inner domains is, respectively,

0.188, 0.068, and 0.028 (roughly 27, 9, and 3km) in the

rotated latitude–longitude E grid used by the HWRF

(WRF-NMM) dynamic core. Lateral boundary condi-

tions are taken from the GFS forecasts and updated

every 6h.

The model physical parameterizations include the

NCEP GFS planetary boundary layer (PBL) scheme

based on observational findings (Gopalakrishnan et al.

2013; Zhang et al. 2015), improved Geophysical Fluid

Dynamics Laboratory (GFDL) surface physics, im-

proved Ferrier microphysics (Ferrier 1994), and im-

plementation of the revised GFS shallow and deep

convective parameterization (Han and Pan 2011) in

the outer domain. The cloud-permitting 3-km nest is

configured to explicitly resolve convection in the inner

core of TCs to be consistent with the higher-spatial-

resolution grids. H213 is coupled to the PrincetonOcean

Model for Tropical Cyclones (Mellor 2004) in the North

Atlantic Ocean (NATL) and the eastern North Pacific

Ocean (EPAC).

b. Vortex initialization

Since operational HWRF forecasts must cover the

whole lifetime of a TC, which often falls outside the

range of reconnaissancemissions, VI is still an important

component of the HWRF system. In basins with data

assimilation (the North Atlantic and eastern North

Pacific as of the time of this publication), VI precondi-

tions the previous 6-h forecast to provide a first guess for

GSI. In other basins, VI provides the initial conditions

from which the subsequent forecast is run.

The VI consists of vortex relocation (VR) and vortex

adjustments (VAs), which can be independently imple-

mented. In general, VI removes the vortex from the

previous 6-h HWRF forecast, makes adjustments to

both vortex size and intensity (if VA is turned on), and

implants the adjusted vortex into the NCEP Global

Data Assimilation System (GDAS) 6-h forecast in-

terpolated to a 308 3 308 domain used for VI (with its

own vortex removed). During VA, the vortex is first

stretched or compressed to more closely match the op-

erational TCVitals assessment of the radius ofmaximum

winds (RMW) and either the four-quadrant maximum

radius of 34-kt (1 kt 5 0.51m s21) winds (R34) or the

radius of the outer closed isobar (ROCI). When

matching the maximum R34, the model R34 (calculated

using the same definition as in TCVitals) is calculated by

averaging the maximum radius of 34-kt wind in each

quadrant. After size adjustment, the axisymmetric

component is rebalanced according to gradient wind

balance, and water vapor is adjusted assuming relative

humidity is unchanged during rebalancing. Next, the

FIG. 1. HWRF forecast and DA domains.

2 The horizontal grid spacing of the staggered E grid is the dis-

tance between adjacent mass and wind points. The conventional

grid spacing is the shortest diagonal distance between two adjacent

mass or wind points (Fig. 5.2 of Janjic et al. 2010). The conventional

grid spacing is approximately equal to 111.0(dx2 1 dy2)1/2 km, where

dx and dy are the horizontal grid spacing of the staggered E grid in

degrees.
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wind speeds throughout the vortex are adjusted so that

the maximum 10-m wind speed (Vmax) more closely

matches that from TCVitals. Finally, a second round of

balancing andmoisture adjustments is required after the

wind adjustment.

Note that limits on size and intensity adjustments are

applied during VA to account for uncertainties in the

assessment of storm state (e.g., Landsea and Franklin

2013; Trahan and Sparling 2012) and model represen-

tativeness errors. This aspect of VA is similar to how

observation errors are taken into account in data as-

similation. The exact implementation of VI is described

more thoroughly in Tallapragada et al. (2013).

Recent tests and publications have illuminated the

contribution of VI to reducing HWRF forecast errors.

Lu et al. (2017b) showed that VR is beneficial evenwhen

high-resolution, inner-core data are available. Without

relocation, analysis increments tend to be highly asym-

metric and unrealistic, resulting in large forecast errors.

Meanwhile, though Lu et al. (2017b) showed that VA is

not strictly necessary when high-resolution data are

available, that is not often the case. Figure 2 illustrates

the impact of VA on track and intensity errors over the

entire 2014 season in the NATL and a large part of that

season in the EPAC basins. The most obvious impact

from the 2014 sample is a large reduction in error of the

initial Vmax in both basins that is associated with a re-

duction in negative bias. In NATL, the difference is only

statistically significant at the analysis time, though on

average, the benefit remains through 24h.After 24 h, the

FIG. 2. Mean absolute errors for (a),(b) track (n mi; 1 n mi = 1.852 km) and (c),(d) maximum 10-m wind speed

(Vmax, kt) as well as (e),(f) the Vmax bias (kt) in experiments with (HWVA) and without (HNVA) vortex adjust-

ment for 2014 TCs in the (left) NATL and (right) EPAC basins. The error bars denote the 95% confidence interval.
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results are mixed such that the net impact on the Vmax

forecast is weakly positive. Meanwhile, VA results in

statistically significant improvements in EPAC Vmax

for the first 12 h, and the positive benefit remains

through 48 h. This improvement is associated with a

large reduction in weak intensity bias. There is some

degradation in EPAC Vmax at longer lead times due to

VA, though it is not statistically significant due to large

variance. Finally, VA appears to result in a small, sta-

tistically insignificant reduction of track error at most

lead times in both basins. Furthermore, additional ex-

periments with both VR and VA turned off reveal

forecast error statistics very similar to the experiments

without vortex adjustment (HVNA) in Figs. 2a, 2c, and

2e (not shown). Although the initial center location er-

ror nearly doubles with VR turned off, this does not

appear to impact forecast error as much as VA does.

Similar results to those shown here have been seen in

other tests with different storms and versions of HWRF.

c. One-way hybrid ensemble–variational data
assimilation system for HWRF

The H213 Data Assimilation System (HDAS) is an

economic one-way hybrid data assimilation system

based on GSI 3DVAR-based ensemble–variational

hybrid data assimilation. The extended control vari-

able method (Lorenc 2003; Buehner 2005) is used to

incorporate ensemble covariance in the variational

data assimilation framework [mathematical details

about the implementation of the algorithm in GSI can

be found inWang (2010)]. Unlike the two-way coupled

hybrid data assimilation system developed for the

NCEP GFS (Hamill et al. 2011; Wang et al. 2013;

Kleist and Ide 2015), the EnKF component was not

included in HDAS to update the ensemble. Instead,

the 80-member GDAS ensemble directly provided

flow-dependent background error covariance. The

horizontal resolution of the GDAS ensemble is T254,

or approximately 78 km at the equator. Data assimi-

lation is performed every 6 h on the HWRF outermost

forecast domain and an inner 208 3 208 domain with a

horizontal grid spacing of 0.028 (Fig. 1). The inner

DA domain, which is used for vortex-scale analysis,

is larger than the forecast nests so that the analysis

can be interpolated to the two forecast nests as well.

The DA domain is also sufficiently large to encom-

pass a transition zone on the outer domain, which is

applied to prevent discontinuities between the inner

and outer domains. A procedure called ‘‘first guess

at appropriate time’’ (FGAT) (Rabier et al. 1998;

Lawless 2010) is used to more accurately calculate

innovations for the observations distributed within the

6-h assimilation window.

The background error covariance in HDAS is treated

differently in the inner and outer domains. In the outer-

domain analysis, the covariance is a blend of 25% static

and 75% ensemble covariance, whereas the weighting

factor for ensemble covariance is increased to 80% in

the inner domain because the static covariance is less

effective in representing the balance of TC vortices. The

horizontal localization scales (Gaussian e-folding de-

correlation length scale) used for assimilation in the

outer and inner analysis domains are 600 and 150 km,

respectively. The vertical localization is 0.5 scale heights

(i.e., natural log of the pressure) for the outer domain,

but for the inner analysis domain, the vertical localiza-

tion depends on storm intensity. For storms weaker than

the category-1 threshold, the vertical decorrelation scale

is 10 model levels, and it is 20 model levels for storms of

greater intensity. The static covariance estimated by the

NMC method (Parrish and Derber 1992) is latitude and

height dependent. Both the covariance blending ratios

and the localization length scales were chosen based on

forecast impact tests.

Two outer loops with 50 inner iterations each are used

for GSI minimization. For nonlinear observation oper-

ators, the tangent-linear approximation is generally

used, and the Jacobians are updated at each outer loop.

For simple nonlinear observation operators that are not

expensive to update with each inner iteration, such as

the observation operator for SFMR-derived surface

wind speeds,3 the option of using a nonlinear operator is

also included in GSI. In this study, the nonlinear oper-

ator for SFMR surface wind speeds is used.

The analysis variables include streamfunction, un-

balanced velocity potential, unbalanced temperature,

unbalanced surface pressure, normalized relative hu-

midity, and the extended control variable a. Model state

variables updated include zonal and meridional wind

speed, temperature, specific humidity, hydrostatic pres-

sure depth, and nonhydrostatic pressure.

d. Observations and experiment design

This study focuses on impacts of two types of high-

resolution, inner-core observations: TDR radial velocity

observations from the NOAA P-3 aircraft and high-

density observations (HDOBs), which include flight-

level wind, temperature, moisture measurements, and

SFMR-derived surface wind speeds from NOAA P-3

3 The observation operator for SFMR surface wind speed data is

expressed as (u2 1 y2)1/2, where u and y are model zonal and me-

ridional wind at the observation location multiplied by the 10-m

wind reduction factor. The 10-m wind reduction factor is the ratio

of the model output wind speed at 10-m height to the model first-

level wind speed.
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and Air Force Reserve Command (AFRC) C-130

aircraft. The performance of HWRF with assimilation

of high-resolution, inner-core observations is evalu-

ated based on four experiments (Table 1) conducted

for applicable storms spanning five hurricane seasons

from 2008 to 2012. The control experiment (HCTL)

does not assimilate HDOB or TDR data, while the

remaining experiments assimilate TDR radial velocity

(HTDR), HDOB data (HDOB), and both TDR and

HDOB (HARC). The storms and the number of cycles

with TDR data and HDOB available are listed in

Table 2.

All experiments assimilate a large variety of con-

ventional data contained in standard NCEP Prepared

Binary Universal Form for the Representation of

meteorological data (PREPBUFR)4 files. GPS drop-

windsonde (dropsonde hereafter) wind and thermody-

namic profiles, which are assimilated into other NCEP

operational models, undergo a quality control (QC)

procedure to remove certain data from the tropical cy-

clone vortex. In particular, dropsonde surface pressure

data within 300 km of the storm center and dropsonde

wind data within a radius of 111km or 3 times the RMW,

whichever is larger, are excluded from assimilation.

Experimentation has shown a generally negative im-

pact of those data due to both dropsonde drift5 and to

issues discussed in the next section with assimilating

inner-core data in the HWRF system for strong storms.

In addition to dropsonde data, other conventional ob-

servations assimilated are radiosonde, aircraft reports,

surface ship and buoy observations, surface observa-

tions over land, pilot balloon winds, wind profilers,

weather surveillance Doppler radar velocity azimuth

display winds, scatterometer winds, and GPS-derived

integrated precipitable water.

For HCTL, data assimilation is performed only on the

HWRF outer domain with conventional observations.

Data assimilation in HCTL mainly aims to improve ini-

tialization of the large-scale TC environment, and the

TC vortex is initialized through the VI procedure. In

the inner-core assimilation experiments, when high-

resolution, inner-core observations are available, data

assimilation is performed on both the outer domain

and the inner analysis domain, with the inner-core

observations assimilated only in the inner domain. To

be consistent with the data assimilation on the outer

domain, conventional data are also assimilated in the

inner analysis domain when inner-core observations

are available.

NCEP started to receive real-timeTDRdata beginning

in the 2010 hurricane season. The TDR data were col-

lected by NOAA’s Aircraft Operations Center (AOC)

and preprocessed by the Hurricane Research Division

(HRD) of NOAA’s Atlantic Oceanographic and Mete-

orological Laboratory (AOML). Major quality control

(Gamache 2005) of the TDR radial velocity data con-

ducted on board the P3 aircraft includes 1) removing the

projection of the aircraftmotion on the observedDoppler

velocity; 2) removing the reflection of the main lobe and

side lobes off the sea surface; 3) removing noise; and

4) velocity unfolding. The radial velocity data were av-

eraged over eight gates along the radial direction and

processed into BUFR format, and data within the 6-h

window centered on the analysis time were dumped

into one BUFR file. The storms with BUFR format of

TDR data available are Earl (2010), Irene (2011), Rina

(2011), Isaac (2012), Leslie (2012), and Sandy (2012).

For all other storms with TDR data, we used superobs

(Weng and Zhang 2012; Aksoy et al. 2013) generated

by HRD. The superobs were processed into 6-h files

with the same cutoff time as the BUFR dumps. The

same data thinning and quality control were conducted

for both BUFR data and superobs. The observation

error, which includes representativeness error, is set to

be 5m s21 and is gradually inflated to 10m s21 when the

difference between the observation and background

(i.e., innovation) is greater than 10m s21. Experiments

were conducted to compare the assimilation of TDR

BUFR data and TDR superobs, and the results were

found to be comparable.

The HDOB data were also processed into 6-h data

files in the BUFR format. The flight-level temperature,

dewpoint temperature, and wind direction–speed were

TABLE 1. List of inner-core DA experiments.

Experiment Configuration and observations assimilated

HCTL Conventional data on outer domain followed by

vortex initialization (no inner-core DA)

HTDR Add TDR radial velocity (Vr) data

HDOB Add HDOB data

HDOB data include flight-level wind (u, y converted

from wind speed and direction), temperature,

specific humidity (converted from dewpoint),

and SFMR retrieved surface wind speed

HARC Add both TDR Vr and HDOB data

4 PREPBUFR files used in HWRF assimilation contain the

same BUFR of meteorological data format of conventional data

that is used in GDAS. This format contains conventional obser-

vations in 6-h time windows centered at each synoptic time.
5 Dropsonde data are transmitted in the TEMPDROP format,

the body of which contains only the release point (Aberson et al.

2017). Thus, as of the time of this publication, NCEP practice is to

assimilate all data from a single dropsonde at the same horizontal

location regardless of drift (i.e., advection) of the dropsonde as

it falls.
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converted to virtual temperature, specific humidity, and

zonal and meridional wind speed, respectively, in GSI

before they were assimilated. The observation errors

assigned for dropwindsonde data were used for flight-

level data. Like all other types of conventional obser-

vations, the observation errors for dropwindsonde data

are retrieved from an observation error table, where the

observation errors are defined on pressure levels from

1100 to 0 hPa with 50-hPa interval. The observation er-

rors for flight-level temperature and wind observations

between 800 and 600 hPa change from roughly 1.28 to
0.68 and 4.4 to 3.7m s21, respectively. For flight-level

moisture observations, the error is 20% in terms of rel-

ative humidity. For SFMR wind speeds, the quality

control marks transmitted with the data are used to

determine if a datum should be used or tossed (Uhlhorn

et al. 2007). The observation error for SFMRwind speed

is set to be 5m s21. All observation errors are subject to

adjustment through quality control.

3. Results

a. Impact of TDR data assimilation

The impact of assimilating TDR radial velocity data

depends on the forecast lead time and metrics examined.

The left columnofFig. 3 shows ahomogeneous comparison

ofHCTLandHTDR(alongwith all other experiments) for

the cases listed in Table 2, beginning with the cycle for

which the TDR data are first available and continuing

through the end of the storm. In Fig. 3a, HTDR possesses

similar track forecast errors to the control experiment at all

forecast lead times. Meanwhile, assimilating TDR data

improves the intensity forecast errors at statistically in-

significant levels after the first 18h (Fig. 3c). The absolute

intensity error reduction with the TDR assimilation ap-

pears to be a result of reduced bias since HCTL tends to

have more noticeable positive intensity bias (Fig. 3e; black

curve) than that seen in the HTDR experiments (Fig. 3e;

red curve).

Stratifying error characteristics from Fig. 3 by storm

intensity (Fig. 4) reveals that the TDR assimilation is

more beneficial to initially weaker storms, but it appears

to be detrimental to major hurricanes. For weak storms

(i.e., storms of tropical storm strength and weaker), as-

similating the TDR data improves both track and in-

tensity forecasts. In particular, data assimilation is able

to correct the large positive intensity bias that occurs

when VI is used to initialize weak storms in HCTL (e.g.,

Fig. 4g). Though none of the improvements here are

statistically significant, the improvement at 24 h does

approach the 95% confidence level. For category 1 and 2

hurricanes, there is substantially less benefit from TDR

data assimilation. The HTDR intensity forecast errors

TABLE 2. The 2008–12 storms (storm number and name) considered for the experiments and number of cycles with HDOB and TDR

data available of each storm.

Year Storm No. Name HDOB TDR Year Storm No. Name HDOB TDR

2008 2 Bertha 7 0 2011 1 Arlene 5 0

3 Cristobal 9 0 2 Bret 9 0

4 Dolly 15 6 4 Don 9 0

5 Edouard 9 0 5 Emily 12 0

6 Fay 23 3 7 Gert 4 0

7 Gustav 28 5 8 Harvey 4 0

8 Hanna 22 0 9 Irene 29 7

9 Ike 30 7 13 Lee 4 2

11 Kyle 10 4 14 Maria 5 0

15 Omar 7 0 15 Nate 12 0

17 Paloma 13 3 16 Ophelia 14 1

Total 11 172 28 18 Rina 15 3

2009 3 Bill 19 4 Total 11 122 13

5 Danny 11 5 2012 2 Beryl 8 0

6 Erika 9 0 4 Debby 13 0

11 Ida 14 0 5 Ernesto 25 0

Total 4 53 9 9 Isaac 31 9

2010 7 Earl 26 12 12 Leslie 3 3

8 Fiona 12 0 17 Rafael 11 2

11 Igor 11 0 18 Sandy 26 8

13 Karl 11 0 Total 7 117 22

15 Matthew 4 0

Total 5 64 12

Total number of storms: 39 HDOB: 528 TDR: 84

DECEMBER 2018 TONG ET AL . 4161



are commensurate with those in HCTL, and the track

errors are worse, though the sample size at longer lead

times is very small. Finally, major hurricane cases in

HTDR suffer from a prominent negative bias through

the short-term intensity forecast. On the other hand,

HCTL has lower Vmax error for major hurricane cases

than for weaker systems.

To further demonstrate the impact of the TDR data

on individual cases, Fig. 5 shows single-cycle track and

intensity forecasts from HTDR and HCTL for a storm

in each group list in Fig. 4. Note that HWRF has been

cycled for at least 5 days for the cases shown in Fig. 5.

For Tropical Storm Isaac, the track forecast in the

TDR data assimilation experiment shows slightly

smaller cross-track errors than that in the control

experiment. For Hurricanes Ike and Earl, track is

commensurate in HCTL and HTDR within the first

3 days. As can be seen from Figs. 5d and 5e, the control

experiment has a positive intensity bias of more than

20 kt for Isaac and Ike, but this error is largely cor-

rected when the TDR data are assimilated. For Earl,

neither the control experiment nor the TDR data as-

similation experiment captures the intensification of

the storm. The predicted intensity in HCTL is weaker

than the intensity (Vmax) of the best track, and the

forecast is even worse in HTDR due to severe spin-

down in the first 6 h that causes a large negative

Vmax bias.

The tendency for HTDR intensity forecasts to be

weaker than those in HCTL is largely a result of analysis

FIG. 3. Mean absolute errors of (a),(b) track (n mi) and (c),(d) Vmax (kt) as well as (e),(f) the Vmax bias (kt).

(left) A homogeneous comparison of the four experiments in Table 1 for TCs with TDR data available; (right)

a comparison between HCTL and HDOB for TCs with HDOB data available.
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increments that weaken the first guess provided by

VI. This is demonstrated in Fig. 6, which shows zonal

wind, temperature, and moisture analysis increments

in center-crossing south–north vertical cross sections

for the storms from Fig. 5. For example, Fig. 6a shows

a positive zonal wind increment near and north of

the center of Isaac that is largest around 400 hPa.

The increment generally opposes the first-guess winds,

thus weakening the circulation, and also results in a

northward-tilting analysis vortex. Assimilating the TDR

data also reduces the strength of Ike andEarl (Figs. 6b,c),

though the impact on the Earl case is much more dra-

matic. Note that the temperature and specific humidity

increments near the storm center are introduced partly

through assimilating dropsonde observations, which are

available below 600hPa, and partly through the cross-

covariance and the assimilation of TDR data. Assimila-

tion of the inner-core observations cools the upper-level

center of Isaac but warms the middle levels. For Ike and

Earl, the temperature increments are negative near

the storm center at all levels below 200hPa, and the

corresponding specific humidity increments around the

storm center are similarly negative for all three cases.

The tendency of analysis increments to cool and dry the

inner core should tend to reduce the tendency to in-

tensify in the HTDR experiment.

Figure 7 further illustrates the impact of TDR assimi-

lation by comparing the azimuthally averaged temperature

andwind structures at initial time fromHTDRandHCTL.

In terms of the primary circulation, all three storms in

HTDR (Figs. 7d–f) are generally weaker and shallower

than they are in HCTL (Figs. 7a–c). The azimuthal mean

radial inflow and outflow of the Isaac and Earl cases are

also significantly weaker in HTDR than they are in HCTL

(not shown).Meanwhile, inHTDR, thewarmcore of Isaac

is at a lower altitude, and that of Ike is weaker. Similar

conclusions can also be obtained regarding the moisture

fields (not shown). Ultimately, it appears that the weaker

and shallower TC structures in HTDR keep storms in that

experiment weaker than in HCTL.

Amajor reason for the consistently weaker analyses in

HTDR is that the first-guess vortex is often stronger

FIG. 4. As in the left column of Fig. 3, but the statistics are shown for (left) tropical storms, (middle) category 1–2 hurricanes, and (right)

major hurricanes.
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than what is observed by aircraft instruments. TheVmax

of the first guess may match that of the TCVitals due to

VI, but that single value cannot represent the three-

dimensional wind structure and strength observed by

the tail Doppler radar. For example, P3 TDR radial

velocity observations and corresponding innovations

are shown in Fig. 8 to illustrate this issue for major

Hurricane Earl. These P3 data shown between 700

and 800 hPa were collected from 1040 to 1409 UTC 30

August 2010. The flight track of the P3 aircraft is be-

tween the positive and negative velocity data points in

Fig. 8a, and the radial velocity pattern along the flight

legs penetrating the storm exhibits the typical TC cy-

clonic circulation. However, observation innovations in

Fig. 8b show an opposing pattern, which means that the

observed circulation is weaker than that of the first

guess. Figure 9 further captures this problem by com-

paring the HTDR first guess (Fig. 9a) and analysis

(Fig. 9b) wind field at 1.5-km altitude with the AOML/

HRD radar wind analysis (Fig. 9c; http://www.aoml.

noaa.gov/hrd/Storm_pages/earl2010/radar.html; Gamache

1997; Lee et al. 2003; Lorsolo et al. 2013). The first guess

has much stronger winds throughout the vortex than

those in the HRD wind analysis, and it also has a

larger RMW (;60 km) than that of the real storm

(;46 km). The HTDR analysis vortex is clearly closer

to HRD’s radar wind analysis than is the first-guess

vortex.

Histograms of TDR radial wind innovations of the

first guess (O-F) and analysis (O-A) in Fig. 10 reveal

significant biases for stronger systems that are consistent

with the above analysis. These histograms show in-

novations for all HTDR cases, grouped by storm initial

intensity, in order to give a more systematic assessment

of performance. The root-mean-square (rms) of the in-

novations of the first guess (O-F) in Fig. 10 and later in

Fig. 13 is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

1

(O2F)2

s
,

where n is the number of data samples. The same

equation applies to O-A for the analysis. As seen in

Figs. 10a–c, the O-F of all three categories has larger

spread than O-A so that the rms of O-A is consistently

smaller than that of O-F. This is expected and confirms

that data assimilation draws the model wind field closer

to the observations. Of particular interest is that the rms

FIG. 5. Forecasts of (a)–(c) track and (d)–(f) intensity (kt) in HCTL (red) and HTDR (blue) from: (a),(d) 0000 UTC 27 Aug 2012

for Isaac; (b),(e) 0000 UTC 11 Sep 2008 for Ike; and (c),(f) 1200 UTC 30 Aug 2010 for Earl; in comparison to the NHC best track

estimate (black).
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of O-F is larger for stronger storms, revealing that the

first guess for those systems is particularly bad. The large

rms error for major hurricanes is associated with a flat

O-F histogram (Fig. 10c), indicating a disproportionate

number of large discrepancies. Further analysis of O-F

against observations in 2D histograms (Figs. 10d–f)

reveals a negative correlation, consistent with the pat-

tern in Fig. 8 that is strongest for major hurricanes. In

other words, as storm intensity increases, the first-guess

vortices tend to be systematically stronger than the ob-

served vortices.

b. Impact of HDOB data assimilation

As mentioned in the previous section, the HDOB

experiment assimilates HDOB observations, which are

available more often than the TDR data (Table 2). The

right-hand panel of Fig. 3 shows that assimilation of the

HDOB data can help improve day-4 and day-5 track

forecasts and intensity forecast after 24 h. However, the

HDOB intensity forecasts are degraded during the first

24 h. In contrast to the 6-h forecast spinup and positive

intensity forecast bias in the control experiment, HDOB

shows 6-h spindown and large negative intensity bias

before the 48-h forecast lead time (Figs. 3e,f).

We now turn to a homogeneous comparison of error

statistics between HTDR and HDOB to better un-

derstand the relative impacts of TDRandHDOBdata.A

problem that arises when trying to compare the experi-

ments in Figs. 3 and 4 is thatHDOBdata are available for

many more cycles than are TDR data. Thus, to compare

the impact of temporal availability with the impact of

data itself, we introduce Figs. 11 and 12 to show a ho-

mogeneous sample of error characteristics for only the

cycles when both HDOB and TDR data are available.

FIG. 6. South–north cross sections through the TC center showing the first-guess (contours) and analysis increments (color shades) for

(a)–(c) zonal wind (m s21), (d)–(f) temperature (K), and (g)–(i) specific humidity (g kg21). Data are shown for Isaac at (left) 0000UTC 27

Aug 2012, (middle) Ike at 0000 UTC 11 Sep 2008, and (right) Earl at 1200 UTC 30 Aug 2010. The TC centers are indicated by the black

circles.
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Some differences in error characteristics between

HDOB and HTDR are a result of better HDOB data

availability, while other differences can be attributed to

both the data and their availability. For example, in

addition to the issue discussed above, the characteristics

of TDR and HDOB data are very different. TDR data

cover much of the model depth and the breadth of the

vortex, but they only directly provide kinematic in-

formation. HDOB data provide both kinematic and

thermodynamic information, but they are mostly at a

single level (plus wind speed at the surface). In Fig. 3a,

HDOB has somewhat lower track errors than HTDR at

FIG. 7. A comparison of azimuthally averaged radius-height profiles in (a)–(c) and (g)–(i) HCTL, and (d)–(f) and (j)–(l) HTDR. Fields

examined are the (a)–(f) tangential wind and (g)–(l) temperature (contours) and temperature anomaly (shaded). The cases shown are

(left) Isaac at 0000 UTC 27 Aug 2012, (middle) Ike at 0000 UTC 11 Sep 2008, and (right) Earl at 1200 UTC 30 Aug 2010.
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120h. However, that difference disappears if only the

cycles with both data available are considered (Fig. 11a).

On the other hand, the strong initial negative bias sug-

gestive of spindown is worse in HDOB than HTDR for

both the full and limited samples (cf. Figs. 3e and 11c).

That being said, the difference in negative bias is greater

in Fig. 3e, where the addition of many cycles in HTDR

without TDR data dampens the impact in the error

statistics.

When the results are binned by initial intensity, two

common themes emerge. First, HDOB produces some-

what better intensity forecasts than HTDR for tropical

storms, though the only statistically significant difference

is at 42h for the full sample (Figs. 4d, 12d). In addition,

the more pronounced negative intensity bias early in the

HDOB forecasts comesmainly from the hurricane cycles

(Figs. 4g–i, 12g–i). This suggests that the HWRF DA

system has a particularly difficult time handling HDOB

data in hurricanes, perhaps because they are less volu-

metrically distributed than TDR data.

Finally, to evaluate the potential value added by as-

similating both TDR and HDOB data, Figs. 3 and 4 and

Figs. 11 and 12 also overlay error statistics from HARC

onto those of HCTL, HDOB, and HTDR. In general,

HARC forecast errors exhibit the undesirable negative

intensity bias of HDOB at early lead times, but they

provide the best forecasts after 24 h (Fig. 3). In partic-

ular, the HARC intensity forecasts are better than

HCTLwith 95% confidence at 36 h (Figs. 3c, 11b), which

represents the only statistically significant intensity im-

provement for the full sample. When results are binned

by initial intensity (Figs. 4, 12), HARC provides the

most benefit for tropical storm cycles when both datasets

are available. In this circumstance, the intensity fore-

casts are significantly better than HCTL from 30 to 48h.

Similar to the analysis in Fig. 10, the innovations of the

HDOB data from HDOB (Fig. 13) reveal increasing

biases for stronger storms. According to the rms of O-F,

the first-guess fits to all HDOBs, except for flight-level

moisture, are better for weaker storms than stronger

storms. Consistent with the TDR histograms, histo-

grams of SFMR wind speeds reveal a tendency for the

first-guess vortex to be significantly too strong for major

hurricanes (Fig. 13i). This tendency decreases for

weaker storms, though it is still modestly apparent for

tropical storms (Figs. 13g,h). Likewise, the flight-level

zonal wind innovations tend to be much larger for major

hurricanes than for weaker systems (Figs. 13j–l). The

O-F distribution of flight-level temperature and specific

humidity are also negatively skewed, indicating the first

guess generally has positive bias in temperature and

moisture fields. Note that the wind speed innovations

are skewed much farther left, toward a more intense

vortex, than are the temperature innovations. This

suggests that not only is the first-guess vortex too strong,

but it is also too strong in a dynamically inconsistent

manner. This kind of bias could contribute to analysis

imbalances, as discussed below.

c. Issues associated with inner-core data assimilation
for strong storms

The reconnaissance data impact analyses in previous

sections reveal that the background vortices tend to be

stronger and deeper than those indicated by the inner-

core observations. The large difference between the

FIG. 8. (a) The TDR radial velocity observations between 800

and 700 hPa that are assimilated into the 1200 UTC 30 Aug 2010

cycle of Earl and (b) the corresponding innovations from HTDR.
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background vortex and the observations shown in Fig. 9

is consistently seen in other major hurricanes, such as

Gustav (2008), Paloma (2008), Bill (2009), Irene (2011),

and Rina (2011). In this section, we further examine the

strong wind bias in the inner core of the background

vortex, where it originates, and how it affects inner-core

data assimilation experiments. This analysis is carried

out for Hurricane Bill, another major hurricane in the

2009 season. Both the TDR andHDOBobservations for

Bill were available at 0000 UTC 19 August 2009, at

which time Vmax and Pmin were, respectively, 105kt

and 955hPa.

To illustrate differences between the observed struc-

ture and that from HWRF, Figs. 14a and 14b compare a

vertical cross section through the TDR composite with a

cross section through the 6-h HWRF forecast from the

1800 UTC 18 August cycle. There are a number of

problems with the vertical structure in the forecast of

Bill. First, compared to the observations, the model

forecast vortex has a stronger, larger inner core, which is

consistent with the previous experiments. In particular,

the forecast inner-core wind speeds between 0.5 and

8km are all too strong. Another problem is that the

forecast wind speed maximum is located around 2-km

altitude, which is much higher than that indicated by the

TDR composite or a typical dropsonde-derived eyewall

wind profile (e.g., Franklin et al. 2003). Although the

vortex is too strong almost everywhere aloft, Vmax is

10 kt lower than that in the best track data.

The strong and large inner-core structures in theH213

forecast are compounded by the VI procedure. For ex-

ample, Fig. 14c shows the vertical structure after VI (in

HCTL, this is the initial condition for the next forecast

cycle, and in the inner-core data assimilation experi-

ments, it is the first guess). To be able tomatch theVmax

of the best track, VI applies an intensity correction

factor everywhere in the storm. While this does bring

Vmax closer to the best track, it also strengthens wind

speeds above the surface that were already too strong to

begin with. This point is emphasized in Fig. 14d, which

shows that the wind structure is maintained in a 6-h

forecast initialized from the vortex in Fig. 14c.

Though VI in H213 makes the vortex too strong by

attempting to match Vmax, it appears a major contrib-

utor to this issue is an inherent model bias. This point is

demonstrated by two salient properties of HCTL fore-

casts. First, HCTL forecasts of intense hurricanes do not

significantly spin down on average, indicating that VI

yields a wind structure consistent with model physics

(even if it is not consistent with observations). Second,

the wind profile shown in Fig. 14b remains through

longer forecast lead times and is present in other storms

in H213 (not shown), thus showing that it is a stable

structure in the model not specifically related to initial-

ization or a particular storm.

The above example without assimilation helps to ex-

plain why Vmax in H213 is too weak when inner-core

data are assimilated. The problems are further illus-

trated with the analysis from HARC (with all recon

observations assimilated) at 0000 UTC 19 August 2009,

which is shown in Fig. 15. TheHARCanalysis in Fig. 15a

matches the TDR analysis (Fig. 14a) better than the first

guess does (Fig. 14c) by significantly reducing the wind

speed above 2km. Although the maximum wind speed

of the analysis at 1-km altitude still matches the TDR

composite, the maximum wind speeds below 1km are

too low. For example, Vmax of the analysis is 93 kt,

which ismore than 10kt lower than that in the best track.

In addition to a biased vertical wind structure, model

error that affects storm size also appears to impact inner

FIG. 9. The (a) first guess and (b) analysis of 1.5-km winds (kt) in Earl at 1200 UTC 30 Aug 2010 from HTDR compared with

(c) AOML–HRD’s Doppler radar wind composite at 1.5-km altitude.
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core data assimilation in H213. This is illustrated in

Fig. 16, which shows wind radii errors in all experiments

(averaged over four quadrants). First, HCTL has a

substantial positive size bias for 50- and 64-kt wind radii.

Regardless of the type of the aircraft inner-core obser-

vations assimilated, the initial 64-kt radii biases are

substantially reduced with assimilation (Fig. 16f). Yet,

the small initial wind radii errors in the assimilation

experiments tend to increase with forecast time, which

suggests that H213 intrinsically produces inner cores

that are too large. Thus, the H213 configuration and

physics may not be able to support the small inner-core

structures seen in observations.

Model errors that impact both storm size and vertical

structure contribute to the prominent spindown ob-

served in H213 major hurricanes. Turning back to

Fig. 15, we can see that the storm weakens and the inner

core expands in the short-term forecast subsequent to

the 0000 UTC HARC analysis (Fig. 15b). This is con-

sistent with the aforementioned model biases and sug-

gests the structure imparted by observations is not

consistent with model physics. Likewise, the forecast

FIG. 10. Histograms of TDR radial wind (rw) innovations. (a)–(c) First guess (O-F; blue) and analysis (O-A; red) grouped by storm

initial intensity as shown in Fig. 4. (d)–(f) and (g)–(i) Two-dimensional histogram of O-F and O-A compared against radial wind ob-

servations, respectively. The data are from all the cases of the HTDR experiment.
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Vmax at this forecast time is 87 kt, whereas in the best

track, it is 115kt. As a result of trying tomatchVmax, VI

at 0600 UTC 19 August strengthens the entire vortex

even more (Fig. 15c). Vukicevic et al. (2013) provide a

more quantitative assessment of the impacts of HWRF

physics on spindown, as is discussed in section 4.

Finally, another major contributor to spindown in

H213 is inevitably suboptimal forecast error covariance

used during data assimilation. As described in section 2,

H213 uses the GDAS perturbations for flow-dependent

covariance in GSI. While this certainly is an improve-

ment upon static error covariance, it is still inadequate

for the tropical cyclone inner core. Though it is beyond

the scope of this paper to quantitatively assess the im-

pacts of this issue in the experiments at hand, we can

turn to recent results from others to assess its scope. In

particular, Lu et al. (2017a) showed that a continuously

cycled hybrid EnKF-Var system for HWRF (2014 ver-

sion) can produce better analyses and forecasts by

using a HWRF EnKF ensemble in place of the GFS

ensemble. Lu et al. (2017b) used an upgraded version of

this system to examine the entire life cycle of Hurricane

Edouard (2014) and found it to significantly reduce

short-term negative intensity bias, as compared with the

operational HWRF. Further improvements were seen

with an upgrade from 3DEnVar to 4DEnVar.

4. Conclusions and discussion

This study assesses the performance of the data as-

similation and modeling system that was implemented

for the FY2013 upgrade of the HWRFModel. The GSI-

based hybrid data assimilation system uses perturba-

tions from the NCEP GFS GSI–EnKF hybrid system to

estimate flow-dependent background error covariance,

and data assimilation follows the vortex relocation and

correction processes to enhance the representation of

the TC inner core. The HWRF data assimilation system

is examined in a series of experiments that assimilate

different combinations of high-resolution, inner-core

aircraft reconnaissance observations collected during

the 2008–12 hurricane seasons. The impact of assimi-

lating reconnaissance observations on the analysis and

forecast of TCs is evaluated by comparing the track and

intensity forecast errors in inner-core data assimilation

experiments with the control experiment in which VI is

applied without any inner-core data assimilation.

Our experiments with different combinations of

inner-core data show that inner-core assimilation can

be beneficial to H213, but its impacts depend strongly

upon the storm initial intensity. Assimilating the TDR

data have neutral to positive impact on TC track

forecasts and a positive impact on TC intensity fore-

casts after the 18-h forecast lead time. The positive

impact is mainly for weaker storms for which assimi-

lation of the TDR data reduces the track errors and the

positive intensity bias. Meanwhile, short-term intensity

forecasts tend to be degraded, mostly due to spindown

of major hurricane cases during the first 6 h. Assimila-

tion of the flight-level and SFMR data improves the TC

track forecasts and has neutral to positive impact on

intensity forecast beyond 30-h forecast lead time.

However, there is degradation of the short-term in-

tensity forecast that is more severe in stronger storms.

In those cases, forecast spindown can increase intensity

FIG. 11. As in the left column of Fig. 3, but for cycles when both

HDOB and TDR data are available.
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forecast error for up to 48 h. Finally, assimilating all

reconnaissance observations including TDR data pro-

duces similar or slightly improved track and intensity

forecasts, compared with assimilating only flight-level,

SFMR, and dropsonde observations.

There are both similarities and differences between

our results and others that have looked at the impact of

reconnaissance on tropical cyclone forecasts. Our results

are most consistent with WZ16, who provide the most

comprehensive assessment to date of the impact of re-

connaissance (i.e., HDOB and TDR) on tropical cy-

clone forecasts. The results from that study showed that

reconnaissance assimilation degraded Vmax forecasts

during the first 24 h and improved them thereafter to

108h, with peak improvement from about 36 to 66 h.

This is a qualitatively similar result to the results ob-

tained here. The track forecasts in WZ16 improved

noticeably due to assimilation after about 36 h, with

peak improvement between 60 and 84 h. Assimilation of

inner-core data here improved track somewhat later in

the forecast, and the maximum improvement was from

84 to 120 h.

The only other study to cleanly examine impact of

inner-core reconnaissance over more than just a few

cases was A15, and their results were somewhat differ-

ent. In particular, Vmax improved through the duration

of most of their forecasts, with the improvement of early

lead times being due to TDR assimilation and the im-

provement of longer lead times being due to other re-

connaissance. The improved performance at early lead

times in A15 was likely a reflection of two or three fac-

tors. First, A15 only examined cases where TDR was

available (note that the TDR data sample used in A15

was largely the same as that used in our study), whereas

the TDR samples were a vast minority of WZ16 cases.

In fact, the WZ16 results were qualitatively similar to

the A15 experiment that did not assimilate TDR data.

The second factor leading to improved performance in

A15 during the first 24 h, as compared with our results, is

that A15 used anEnKF that is able to generatemesoscale

error covariance, whereas the covariance in H213 came

from GDAS (this is discussed further below). Finally, in

the experiment assimilating onlyHDOBdata,A15 used a

very different data sample, which can impact results.

FIG. 12. As in Fig. 4, but for cycles with both TDR and HDOB data available.
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Analysis of the different experiments here reveals that

the inner-core data assimilation benefits weaker storms

for H213 because it offsets an intrinsic positive intensity

bias that occurs in forecasts initialized only with VI

(HCTL). Our analysis reveals that the bias is a result of

TC vortices in H213 having stronger, more symmetric

circulations when no inner-core observations are as-

similated. Such overestimation of the TC intensity oc-

curs partly because of a combination of model internal

biases and the fact that VI alters the wind distribution

throughout the vortex, which is proportional to the dif-

ference between the forecasted and observed Vmax.

The TCVitals information used to perform size and

intensity corrections in VI (RMW, R34, ROCI, and

Vmax) are only surface kinematic values. They cannot

represent a fully three-dimensional kinematic and

thermodynamic structure of the vortex. This is most

problematic when asymmetries related to vortex tilt and

FIG. 13. Histograms of O-F (blue) and O-A (red) for flight-level (a)–(c) temperature (K), (d)–(f) specific humidity (g kg21),

(g)–(i) SFMR retrieved wind speed (m s21), and (j)–(l) flight-level zonal wind (m s21), grouped by storm initial intensity. The data are

from all HDOB cases.
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strong vertical wind shear are present, which frequently

occurs in weaker storms. As such, inner-core data as-

similation can provide more accurate structure of

asymmetric systems that VI cannot adequately address.

As long as the bias in the first guess is small, which is the

case for weaker storms, moderate correction to vortex

kinematic and thermodynamic structure through data

assimilation can help improve forecast skill.

For strong storms, model biases appear to worsen, and

the conflict between the vortex structure preferred in

H213 and what actually occurs dominates any benefit

from data assimilation. By adjusting the entire vortex to

match the model Vmax with that from TCVitals, VI

reinforces aforementioned model biases to maintain a

‘‘fat and strong’’ inner-core structure for strong storms.

Though assimilating inner-core data improves analyses

in H213, severe problems arise because H213 is unable

to produce a vortex with the proper structure. In par-

ticular, the resulting Vmax has a negative bias, and the

structure imparted by the observations is inconsistent

with that preferred by the model physics. After the in-

evitable short-term spindown, VI resurrects the ‘‘fat and

strong’’ inner-core structure in its attempt to match the

TCVitals during the next analysis cycle.

Though VI is still used in the current operational

HWRF, by design, it cannot fully use information from

different observations. Therefore, the opportunity for VI

to improve is limited. It is expected that as model physics

and the data assimilation system improve, VI will be

phased out. More comprehensive experiments will be

conducted to evaluate the role of VI as the modeling and

data assimilation system evolves in the future.

Though this study is somewhat subjective in terms of

assessing reasons for spindown, substantial insight can

be gained by comparing these results with those from

other DA systems that use the HWRF Model. In par-

ticular, the HEDAS system at NOAA HRD utilizes an

EnKF with cycled covariance to perform advanced as-

similation of a substantial number of tropical cyclones of

varying intensity (Aksoy et al. 2013; A15). Furthermore,

Lu et al. (2017a) developed a continuously cycled

3DEnVar system for HWRF, and Lu et al. (2017b)

conducted a thorough analysis of that system, as well as

an upgrade to 4DEnVar.

FIG. 14. South–north vertical cross-sections of zonal wind speed from (a) the HRD TDR analysis at 0000 UTC

19 Aug 2009; (b) the 6-h HCTL forecast valid at 0000 UTC; (c) vortex initialization at 0000 UTC; and (d) 6-h

forecast from (c). Note that (b)–(d) are all fromHCTL experiment. There is no inner-coreDA inHCTL; the vortex

is initialized through vortex initialization. Therefore, (c) is the initial condition used for the forecast in (d).
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Suboptimal error covariance undoubtedly contributes

to spindown. The system developed by Lu et al. (2017b)

examined the entire life cycle of Hurricane Edouard

(2014) and found it to significantly reduce short-term neg-

ative intensity bias, as compared with the operational

HWRF. Further improvements were seen with an up-

grade from 3DEnVar to 4DEnVar. A similar 3DEnVar

systemwas implemented in the 2017 operational HWRF

with a primary benefit of reducing short-term negative

intensity bias, though it does not solve spindown for

strong storms (Sippel et al. 2017). A case study by Lu

et al. (2017b) shows that further upgrades to the system

from 3DEnVar to 4DEnVar can improve intensity

forecasts for earlier lead times.

Spindown issues are not limited to the operational

HWRF. The stronger storms in A15, which used the

more advanced HWRF data assimilation system in

HEDAS, were also subject to substantial spindown,

and Vukicevic et al. (2013) provided detailed analysis

of the issue. That study revealed that HEDAS tends to

exhibit a weak bias in the secondary circulations of

strong hurricanes, such that the strong primary circu-

lation cannot be supported. A model bias in PBL

height, as well the lack of analysis for vertical velocity

(forecasts in HEDAS started with zero vertical velocity

at the time, and they still do in HWRF), are possible

reasons for this bias. Since the HEDAS system uses the

operational HWRF Model (albeit usually an upgrade

or two behind), the operational HWRF also suffers the

same model bias issues. Finally, even the advanced

system in Lu et al. (2017b) can suffer spindown at

times. Ongoing work has shown that physics changes

can significantly reduce spindown in that system (Wang

2017), though a major challenge is to implement

changes that yield appropriate inner-core structures

but do not cause large positive intensity biases for

weaker systems.

Some of the problems identified in Vukicevic et al.

(2013) have also been identified and addressed in other

work. For example, Zhang et al. (2015) and some earlier

studies demonstrated the important role of the bound-

ary layer on hurricane structure and intensity forecasts.

Particularly, the vertical diffusion in the boundary layer

has profound impact on controlling inner-core size, in-

flow strength and depth, and the strength and height of

the maximum tangential wind speed. Improvement in

vertical diffusion can improve storm structure with re-

spect to aircraft observations. Recent work by Zhang

and Marks (2015) also found that storm size and kine-

matic boundary height are sensitive to the horizontal

diffusion. Lowering the surface drag coefficient in hur-

ricanes, which was done starting with the 2016 im-

plementation of HWRF, also significantly improves

vertical wind profiles. Future improvements to HWRF

will involve collaboration with scientists in the research

community, such as HRD, to more systematically eval-

uate model bias and improve model physics.

The results here motivated further testing and

implementation of inner-core reconnaissance assimila-

tion in the operational HWRF system. In particular,

assimilation of HDOB data began in the 2017 HWRF

implementation (Sippel et al. 2017) after retrospectives

FIG. 15. As in Fig. 14, but for HARC (a) analysis at 0000 UTC

19 Aug 2009, (b) the 6-h forecast from (a), and (c) vortex initiali-

zation at 0600 UTC 19 Aug 2009.
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continued to show a considerable forecast benefit (oper-

ational assimilation of TDR data began in 2013, before

this study was completed). Because of problems with

spindown for strong storms, the current practice in the

operational HWRF is to not use inner-core analysis in-

crements for hurricanes (and instead only use VI; note

that this special treatment for the inner-core analysis

increments is not used in the experiments presented in

this manuscript). As a result of these implementations,

unpublished tests by NCEP have continually shown that

inner-core reconnaissance has a meaningful positive

impact on tropical cyclone track and intensity forecasts

fromHWRF. It is anticipated that GSI increments will be

used for stronger storms as data assimilation advances,

which should increase the benefit of inner-core data.

The above results have motivated significant improve-

ments to HWRF data assimilation in the near future.

The benefit of using more frequent cycling including

cloud, precipitation, and vertical velocity analysis, as

well as more advanced schemes, such as 4DEnVar, will

be further explored. In addition, an initialization scheme

using incremental analysis updates (IAUs) (Bloom et al.

1996), which aims to improve the balance in the initial

condition, is under development and will potentially

be implemented soon. Besides data assimilation system

upgrades, effort is being invested to improve the use of

the aircraft observations through better quality control,

observation error tuning, and ingesting more aircraft

observations (e.g., observations from the NOAA Gulf-

stream IV and NASA Global Hawk aircraft), as well

FIG. 16. Average wind radius bias (mean differences relative to the best track computed over all quadrants) are

evaluated for: (a),(b) 34-; and (c),(d) 50- and (e),(f) 64-kt radii. (left) A homogeneous comparison of the four

experiments for all cycles, as in the left column of Fig. 3; (right) a comparison for the cycle when both TDR and

HDOB data are available, as in Fig. 11.
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as satellite observations. Finally, in addition to ad-

dressing the key issues of the data assimilation, NCEP is

addressing the role of and possible alternatives to VI.
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